High efficiency graphene solar cells by chemical doping.
نویسندگان
چکیده
We demonstrate single layer graphene/n-Si Schottky junction solar cells that under AM1.5 illumination exhibit a power conversion efficiency (PCE) of 8.6%. This performance, achieved by doping the graphene with bis(trifluoromethanesulfonyl)amide, exceeds the native (undoped) device performance by a factor of 4.5 and is the highest PCE reported for graphene-based solar cells to date. Current-voltage, capacitance-voltage, and external quantum efficiency measurements show the enhancement to be due to the doping-induced shift in the graphene chemical potential that increases the graphene carrier density (decreasing the cell series resistance) and increases the cell's built-in potential (increasing the open circuit voltage) both of which improve the solar cell fill factor.
منابع مشابه
Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.
Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conducti...
متن کاملFunctionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge ...
متن کاملRole of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells.
The advent of chemical vapor deposition (CVD) grown graphene has allowed researchers to investigate large area graphene/n-silicon Schottky barrier solar cells. Using chemically doped graphene, efficiencies of nearly 10% can be achieved for devices without antireflective coatings. However, many devices reported in past literature often exhibit a distinctive s-shaped kink in the measured I/V curv...
متن کاملThe Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency
The main problemswith the use of fossil fuels is the restrictions on their access and the detrimental consequences of their use which causes a threat to human health and quality of life. Consequently, the use of other energy sources has become necessary. Renewable Energy as a permanent and clean energy source is an answer to this problem. One such energy source includes photovoltaic solar energ...
متن کاملMetal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes
Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2012